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11.1. Separation of variables for elliptic equations

(a) Find a solution to
∆u = 0, (x, y) ∈ [0, π]2,
u(x, 0) = u(x, π) = 0, x ∈ [0, π],
u(0, y) = 0, y ∈ [0, π],
u(π, y) = sin(y), y ∈ [0, π].

(b) Find a solution to

∆u = sin(x) + sin(2y), (x, y) ∈ [π, 2π]2,
u(x, π) = 0, x ∈ [π, 2π],
u(x, 2π) = − sin(x), x ∈ [π, 2π],
u(π, y) = 0, y ∈ [π, 2π],
u(2π, y) = − sin(2y)/4, y ∈ [π, 2π].

Hint: find a simple function f(x, y) such that v := u + f is harmonic. Then, solve
for v.

SOL:

(a) We are looking for an harmonic function u such that

u(0, y) = 0, u(π, y) = sin(y), u(x, 0) = u(x, π) = 0.

(Notice that since the solution at (x, 0) and (x, π) is already 0, we do not need to
split it into two functions, and we can directly work with u. Compare with Example
7.21 in Pinchover’s.)

We use separation of variables, and we assume that u can be expressed as sum of
harmonic functions w(x, y) = X(x)Y (y). Imposing that w is harmonic we reach that

Y ′′(y) + λY (y) = 0,

and Y (0) = Y (π) = 0. On the other hand, we also reach

X ′′(x) − λX(x) = 0.

The problem for Y is already standard, and we have as eigenvalues λn = n2 and as
eigenfucntions Yn(y) = sin(ny), for n = 1, 2, . . . . Thus, the equation for X becomes
simply

X ′′
n(x) − n2Xn(x) = 0.
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Solutions to the previous problem are of the form Xn(x) = αn sinh(nx) + βn cosh(nx).
However, such basis (in terms of sinh(nx) and cosh(nx)) is not very useful when
dealing with boundary behaviour for this problem at x = 0, π. Thus, we choose
instead the basis sinh(nx) and sinh(nx − nπ). Let us now show why we can express
the solution in that basis. That is, we want to write

Xn(x) = γn sinh(nx) + δn sinh(n(x − π)),

and find the coefficients γn and δn in terms of αn and βn. To do that, we use that
sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y), that sinh is odd and cosh is even.
Therefore,

sinh(n(x − π)) = sinh(nx) cosh(nπ) − cosh(nx) sinh(nπ),

and
Xn(x) = (γn + δn cosh(nπ)) sinh(nx) − δn sinh(nπ) cosh(nx),

and we get that βn = −δn sinh(nπ) and αn = γn + δn cosh(nπ). That is, δn =
−βn/ sinh(nπ) and γn = αn − δn cosh(nπ); and both bases are interchangeable.

Thus, let us express the solution u(x, y) as

u(x, y) =
∑
n≥1

sin(ny) (δn sinh(nx) + γn sinh(n(x − π))) .

Now, since u(0, y) = 0, we deduce that γn = 0. On the other hand, since u(π, y) =
sin(y),

u(π, y) =
∑
n≥1

δn sin(ny) sinh(nπ) = sin(y),

we deduce that δ1 = 1
sinh(π) , and δn = 0 for n ≥ 2. Thus, our solution is going to be

u(x, y) = sin(y) sinh(x)
sinh(π) .

(b) Since sin′′ = − sin, we can easily check that

0 = ∆u − sin(x) − sin(2y) = ∆
(

u + sin(x) + sin(2y)
4

)
.

Hence, setting v(x, y) := u(x, y) + sin(x) + sin(2y)
4 we obtain that v is an harmonic

function solving

∆v = 0, for π < x < 2π, π < y < 2π,
v(x, π) = sin(x), for π ≤ x ≤ 2π,

v(x, 2π) = 0, for π ≤ x ≤ 2π,

v(π, y) = sin(2y)
4 , for π ≤ y ≤ 2π,

v(2π, y) = 0, for π ≤ y ≤ 2π.
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We factorize then v = v1 + v2 where

∆v1 = 0, for π < x < 2π, π < y < 2π,
v1(x, π) = 0, for π ≤ x ≤ 2π,

v1(x, 2π) = 0, for π ≤ x ≤ 2π,

v1(π, y) = sin(2y)
4 , for π ≤ y ≤ 2π,

v1(2π, y) = 0, for π ≤ y ≤ 2π.

and 

∆v2 = 0, for π < x < 2π, π < y < 2π,
v2(x, π) = sin(x), for π ≤ x ≤ 2π,

v2(x, 2π) = 0, for π ≤ x ≤ 2π,
v2(π, y) = 0, for π ≤ y ≤ 2π,

v2(2π, y) = 0, for π ≤ y ≤ 2π.

This corresponds to the following splitting:

v
=

si
n(

2y
)

4 0

v = sin(x)

0

∆v = 0 0 0

v2 = sin(x)

0

∆v2 = 0⇝ +

v 1
=

si
n(

2y
)

4 0

0

0

∆v1 = 0

Figure 1: Splitting of the Laplace equation.

After operating the classical separation of variable, we have that

v1(x, y) =
+∞∑
n=1

(
An sinh(n(x − π)) + Bn sinh(n(x − 2π))

)
sin(n(y − π)),

v2(x, y) =
+∞∑
n=1

(
Cn sinh(n(y − π)) + Dn sinh(n(y − 2π))

)
sin(n(x − π)), .

To determinate the coefficients, we have to take advantage of the boundary data:

0 = v1(2π, y) =
+∞∑
n=1

An sinh(nπ) sin(n(y − π)),

which implies An ≡ 0. On the other side,

sin(2y)
4 = v1(π, y) =

+∞∑
n=1

Bn sinh(−nπ) sin(n(y − π)),
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and since sin(2y) = sin(2(y−π)) we obtain that B2 = (4 sinh(−2π))−1 = −(4 sinh(2π))−1,
and Bn = 0 otherwise. Similarly, Cn ≡ 0 and combining

sin(x) = v2(x, π) =
+∞∑
n=1

Dn sinh(−πn) sin(n(x − π)),

with the identity sin(x) = − sin(x − π) we obtain that D1 = (− sinh(−π))−1 =
sinh(π)−1, and Dn = 0 otherwise. Combining everything we obtain that

u(x, y) = v(x, y) − sin(x) − sin(2y)
4 = v1(x, y) + v2(x, y) − sin(x) − sin(2y)

4

= −sinh(2(x − 2π))
4 sinh(2π) sin(2(y − π)) + sinh(y − 2π)

sinh(π) sin(x − π) − sin(x) − sin(2y)
4

= −
(sinh(2(x − 2π))

4 sinh(2π) + 1
4

)
sin(2y) −

(sinh(y − 2π)
sinh(π) + 1

)
sin(x).

11.2. Heat Equation Let u : [0, 1] × [0, +∞) → R be solution of the heat equation


uy − uxx = 0, (x, t) ∈ (0, 1) × (0, +∞),
u(x, 0) = x(1 − x), x ∈ [0, 1],
u(t, 0) = u(t, 1) = 0, t ∈ [0, +∞).

Show that 0 ≤ u(0.5, 100) ≤ 0.00001.

Hint: notice that w(x, t) = e−π2t sin(πx) solves the same PDE with different initial
conditions.

SOL: First, let us check that w := e−π2t sin(πx) solves the equation:

∂tw = −π2w = ∂xxw .

One can check that sin(πx) ≥ x(1 − x) in the interval [0, 1] (for example, you can use
wolfram-alpha for checking this!). Thus, we have w(x, 0) ≥ u(x, 0).

Similarly, 0 solves the equation and u(x, 0) ≥ 0.

By the comparison principle for solutions of the heat equation (which is an easy
consequence of the maximum principle for parabolic equations), we deduce 0 ≤
u(x, t) ≤ w(x, t) for all x ∈ (0, 1) and t ≥ 0. In particular we find

0 ≤ u(0.5, 100) ≤ w(0.5, 100) = e−100π2 sin
(π

2
)

= e−100π2 ≪ 0.00001 .
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11.3. Uniqueness of solutions Let D ⊂ R2 be a planar domain and f : ∂D → R a
continuous function defined on its boundary. Show that the following elliptic problem∆u = u, in D,

u = f, on ∂D,

admits at most one smooth solution.

If u1 and u2 solve the same PDE, what can we say about u1 − u2?

SOL: Let u1, u2 : D̄ → R be two solutions. Let v := u1 − u2 be the difference. Notice
that v satisfies {

∆v = v, in D,
v = 0, on ∂D,

Assume that v > 0 somewhere in D. Let (x, y) ∈ D be the maximum point of v.
Then we have v(x, y) > 0 and ∆v ≤ 0, which is a contradiction since v = ∆v.

Hence, it must be v ≤ 0. Similarly (just repeating the argument for −v instead of v)
we can show v ≥ 0. Hence v = 0 everywhere and thus u1 = u2.
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